The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize.

نویسنده

  • Michael J Scanlon
چکیده

Maize (Zea mays) leaves develop basipetally (tip to base); the upper blade emerges from the shoot apical meristem (SAM) before the expansion of the lower sheath. Founder cells, leaf initials located in the periphery of the SAM, are distinguished from the SAM proper by the differential accumulation of KNOX proteins. KNOX proteins accumulate in the SAM, but are excluded from maize leaf primordia and leaf founder cells. As in Arabidopsis and tomato (Lycopersicon esculentum), maize shoots failed to initiate new leaves when cultured in the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). We demonstrate that NPA-induced arrest of leaf initiation in maize is correlated with the failure to down-regulate KNOX accumulation in the SAM. In addition, NPA-cultured shoots formed abnormal tubular leaf bases in which the margins failed to separate in the lower leaf zone. The tubular leaf bases always formed in the fourth leaf from the arrested meristem. Moreover, the unseparated margin domains of these tubular leaf bases accumulated ectopic KNOX protein(s). Transfer of NPA-cultured apices to NPA-free media resulted in the resumption of leaf initiation from the SAM and the restoration of normal patterns of KNOX down-regulation, accordingly. These data suggest that the lower sheath margins emerge from the leaf base late in maize leaf development and that the separation of these leaf margin domains is correlated with auxin transport and down-regulation of KNOX proteins. In addition, these results suggest that the down-regulation of KNOX accumulation in maize apices is not upstream of polar auxin transport, although a more complicated feedback network may exist. A model for L1-derived margin development in maize leaves is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The auxin influx carrier is essential for correct leaf positioning.

Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively trans...

متن کامل

Auxin is required for leaf vein pattern in Arabidopsis.

To investigate possible roles of polar auxin transport in vein patterning, cotyledon and leaf vein patterns were compared for plants grown in medium containing polar auxin transport inhibitors (N-1-naphthylphthalamic acid, 9-hydroxyfluorene-9-carboxylic acid, and 2,3,5-triiodobenzoic acid) and in medium containing a less well-characterized inhibitor of auxin-mediated processes, 2-(p-chlorophyno...

متن کامل

Auxin transport promotes Arabidopsis lateral root initiation.

Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests l...

متن کامل

Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis.

The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) we...

متن کامل

CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot.

In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 133 2  شماره 

صفحات  -

تاریخ انتشار 2003